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Abstract:This paper detailedly discusses the geometry idea, design steps and algorithm implementation in design-
ing a FOPI controller based on a vector method. It takes first order controlled plant, first order plus time delay
controlled plant and fractional order plant as examples, using traditional method and vector method to solve the
parameters of the FOPI controller. The results show that the vector method has the same dynamic response per-
formance as the traditional method, which demonstrates the reasonability of the vector method. Compared with
traditional method, the FOPI controller design method based on the geometry idea (vector method) is simpler and
more convenient. Besides, the proposed method overcomes the traditional phenomenon of multiple solutions of
controller parameters.
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1 Introduction

Fractional calculus is a more than 300-years-old top-
ic. Because it can be a powerful and widely used
tool for better modeling and control of processes, in
recent years, an increasing number of studies can be
found related to the application of fractional calculus
in many areas of science and engineering [1–3], such
as continuous stirred tank reactor in chemical pro-
cess, the path tracking control of tractors, unmanned
aerial vehicle system, and hybrid adaptive cruise con-
trol [4–7].

Design of a fractional order proportional integral
(FOPI) controller which aims at enhancing the sys-
tem control performance is an important issue in s-
tudying fractional calculus control area. Monje et
al. [8–10] designed thePIλDµ controller by three
constraints, phase margin constraint, amplitude mar-
gin constraint and the constraint of sensitivity func-
tion and compensation function. Barbosa et al. [11]
designed thePIλDµ controller based on ideal Bode
transfer function. Besides, other design methods of
the fractional order controller based on particle swar-
m [12, 13] and neural network [14] have been pro-
posed. Chen added the constraint of robustness to
open-loop gain variation on the basis of the constraints
of phase and amplitude margins, and proposed a new
design method of robustPIλ controller. That de-
mands the phase is flat around the crossover frequency

ωc in phase-frequency characteristic [15–22]. In our
previous work, Chen’s method has been successfully
applied to different plants [19,21,22] and some exper-
iments of real systems have been done to verify the
effectiveness of the method [19].

References [15–19,21,22] give the traditional de-
sign processes of a robust FOPI controller. Howev-
er, it exists enormous calculated amount and complex
parameter tuning processes in designing a FOPI con-
troller because of the extra real parametersλ. Besides,
sometimes it would appear a new phenomenon that
solution parameters of controller are not unique. Mul-
tiple solutions will make engineers hard distinguish
which parameters they should adopt to design a FOPI
controller in engineering practice. Compared with tra-
ditional method, the proposed method can settle the
problems.

This paper proposes an optimization algorithm
based on the vector method used for simplifying the
calculated amount and parameter solution processes
of a robust FOPI controller. The idea of the simpli-
fied algorithm is that a vector model of fractional or-
der controller is built in advance in complex plane,
and then geometrical relationship in complex plane
is used to solve the controller parameters. This pa-
per takes robust FOPI controller (a FOPI controller to
achieve the robustness to the loop-gain variations) as
an example and discusses the FOPI controller parame-
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ter solution process in detail. The results show that not
only does the proposed algorithm decrease the calcu-
lated amount, but also the FOPI controller parameters
which are solved out by the method are unique and
effective.

The paper is organized as follows: In Section II,
vector model of an integer order PID controller and
vector model of a fractional order PID controller are
built in complex plane. In Section III, on the basis of
traditional robust fractional order PID controller de-
sign method, tuning parameter rules for robust FOPID
controller based on vector model are established. Sec-
tion IV is the key content. It illustrates how the vec-
tor model of fractional calculus is applied to solution
of FOPI controller parameters. Section V concludes
the parameter solution process of robust FOPI con-
troller based on vector method. Section VI proves the
uniqueness of controller parameter solution based on
the vector method and overcomes the traditional phe-
nomenon of multiple solutions of controller param-
eters. In Section VII, we take first order controlled
plant, first order plus time delay controlled plant and
fractional order plant as examples to design a FOPI
controller, and give the simulation diagram and anal-
ysis. Finally, the paper is concluded in section VIII.

2 Vector Model of Controller
We can use mapping approach to map a controller in-
to complex plane and build the vector model of con-
troller.

2.1 Vector Model of an Integer Order PID
(IOPID) Controller

The transfer function of IOPID controller can be ex-
pressed as,

C(s) = Kp +
Ki

s
+Kds (1)

The frequency response can be got,

C(jω) = Kp +
Ki

jω
+Kdjω (2)

So the vector model of IOPID controller can be shown
in Fig.1.

From Fig.1 we can see that the IOPID controller
is made up of three parts, which respectively are pro-
portional vector, integral vector and differential vec-
tor, where the proportional vector is located in posi-
tive real axis, the integral vector is located in negative
imaginary axis and the differential vector is located in
positive imaginary axis. The IOPID controller vector

which is synthesized by the three vectors can only ap-
pear in right half complex plane. The module value
of IOPID controller vector and its phase angle change
along with the variation of controller parametersKp,
Ki andKd.
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Fig. 1. Vector model of IOPID controller

2.2 Vector Model of a Fractional Order PID
(FOPID) Controller

The transfer function of FOPID controller can be ex-
pressed as,

C(s) = Kp +
Ki

sλ
+Kds

µ (3)

The frequency response can be got,

C(s) = Kp +
Ki

(jω)λ
+Kd(jω)

µ (4)

So the vector model of FOPID controller can be
shown in Fig.2.

From Fig.2 we can see that the proportional vec-
tor of the FOPID controller vector is still located in
positive real axis. However, because of existing non-
integer order integral operatorλ ∈ (0, 2) and non-
integer order differential operatorµ ∈ (0, 2), it will
make integral vector and differential vector distribute
in any position of complex plane with the variations
of λ andµ. So the synthetic FOPID controller vector
can appear in any position of complex plane.
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Fig. 2. Vector model of FOPID controller
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3 Tuning Parameter Rules for Ro-
bust FOPID Controller Based on
Vector Model

According to the known plantP (s), unknown con-
troller C(s) and open-loop transfer functionG(s) =
C(s)P (s), references [15–22] give the tuning param-
eter rules for robust FOPID controller. On the basis of
traditional three constraints, This paper deduces new
tuning equations based on vector model.
(i) The amplitude of system’s open-loop transfer func-
tion at crossover frequencyωc should satisfy the fol-
lowing expression,

|G(jωc)| = |C(jωc)P (jωc)| = 1 (5)

(ii) The phase of system’s open-loop transfer function
at crossover frequencyωc should satisfy the following
expression,

Arg[G(jωc)] = Arg[C(jωc)P (jωc)] = −π + φm

(6)
whereφm is the phase margin value.
(iii) In order to insure the robustness to open-loop
gain variation, it demands that the phase of system’s
open-loop transfer function around cut-off frequency
ωc should remain unchanged. It should satisfy the fol-
lowing expression,

d(Arg[G(jω)])

dω

∣

∣

∣

ω=ωc

= 0 (7)

From expressions (5) and (6), we can get the vec-
tor of system’s open-loop transfer functionG(jω) at
crossover frequencyωc,

G(jωc) = 16 (φm − 180◦) (8)

The frequency response of the plant is known as
P (jω), we can obtain the vector of plant at crossover
frequencyωc,

P (jωc) = |P (jωc)|6 P (jωc) (9)

According to the expressionG(jω) = C(jω)P (jω),
we can get the vector of FOPID controller at crossover
frequencyωc,

C(jωc) =
1

|P (jωc)|
6 (φm− 6 P (jωc)−180◦) = A6 θ

(10)
where

A = 1/|P (jωc)|

θ = φm −Arg[P (jωc)]− 180◦

It can be got from expression (7),

d(Arg[P (jω)])

dω

∣

∣

∣

ω=ωc

+
d(Arg[C(jω)])

dω

∣

∣

∣

ω=ωc

= 0

(11)
Assume that

d(Arg[P (jω)])

dω

∣

∣

∣

ω=ωc

= ϕp (12)

d(Arg[C(jω)])

dω

∣

∣

∣

ω=ωc

= ϕc (13)

An equation can be obtained,

ϕc = −ϕp (14)

whereϕc andϕp are respectively phase angle gradi-
ent of the controller and phase angle gradient of the
plant at the crossover frequencyωc. So based on the
new vector method, the robust FOPID controller de-
sign should satisfy the formula(10) and formula(14).

4 Parameter Solution of FOPI Con-
troller Based on Vector Method

The transfer function of FOPI controller can be ex-
pressed as,

C(s) = Kp +
Ki

sλ
, (0 < λ < 2) (15)

The frequency response can be obtained,

C(jω) = Kp +
Ki

(jω)λ
, (0 < λ < 2) (16)

So the vector model of FOPI controller can be shown
in Fig.3.
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Fig. 3. Vector model of FOPI controller

From Fig.3, we can get the phase angle of FOPI
controller,

Arg[C(jω)] = arctan
Ki

ωλ sin(−π
2λ)

Kp +
Ki

ωλ cos(−π
2λ)

(17)
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So the phase angle gradient of FOPI controller can be
obtained,

d(Arg[C(jω)])

dω

∣

∣

∣

ω=ωc

=
λKp

Ki

ωλ+1
c

sin(λπ/2)
(

Kp +
Ki

ωλ
c
cos(λπ/2)

)2
+

(

Ki

ωλ
c
sin(λπ/2)

)2

= ϕc

(18)
According to formula (14), we can get,

−λKp
Ki

ωλ+1
c

sin(λπ/2)
(

Kp +
Ki

ωλ
c
cos(λπ/2)

)2
+
(

Ki

ωλ
c
sin(λπ/2)

)2 = ϕp

(19)
Fig.4 shows the vector model of FOPI controller
which satisfies the formula(10),
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Fig. 4. Specified condition of FOPI controller vector

From Fig.4 and the cosine law, we can get,

Ki

ωλ
c

=
√

K2
p +A2 − 2KpA cos θ (20)

According to (20) and laws of right triangle, we can
get

cos(−
π

2
λ) =

A cos θ −Kp
√

K2
p +A2 − 2KpA cos θ

(21)

We can obtain other relationships from Fig.4,

(

Kp +
Ki

ωλ
c

cos(λπ/2)
)2

+
(Ki

ωλ
c

sin(λπ/2)
)2

= A2

(22)
Ki

ωλ
c

sin(−λπ/2) = A sin θ (23)

From equations (19) ,(22) and (23), we can get,

λKp sin θ

Aωc
= ϕp (24)

So the tuning parameter equations of FOPI controller
based on vector model can be concluded as follows,







































Ki

ωλ
c

=
√

K2
p +A2 − 2KpA cos θ (25)

cos(
π

2
λ) =

A cos θ −Kp
√

K2
p +A2 − 2KpA cos θ

(26)

λKp sin θ

Aωc
= ϕp (27)

It can be seen that compared with traditional
method of solving controller parameters in references
[15–19, 21, 22], using the vector method to solve the
controller parameters has smaller calculated amount
and simpler derivation process.

5 Parameter Solution Process of Ro-
bust Fractional Order Controller
Based on Vector Model

(i) According to the known plantP (s), solve
the amplitude-frequency characteristic|P (jω)| and
phase-frequency characteristic6 P (jω).
(ii) Given crossover frequencyωc and phase margin
φm.
(iii) Obtain module value of the plant|P (jω)|, phase
angle of the plant6 P (jω) and phase angle gradient of
the plantϕp in the condition ofω = ωc.
(iv) Obtain module value, phase angle and phase an-
gle gradient of the controller. Those are
A = 1/|P (jωc)|, θ = φm−Arg[P (jωc)]− 180◦ and
ϕc = −ϕp.
(v) Solve equations (25), (26) and (27), and get the
controller parameters.

6 Uniqueness of FOPI Controller Pa-
rameter Solution Based on Vector
Method

The uniqueness of FOPI controller parameter solution
will be discussed in this section.

(i) From equation (26), one can obtain,

cos
(π

2
λ
)

=
A cos θ −Kp

√

(Kp −A cos θ)2 +A2 sin2 θ
(28)

It is not difficult to see thatλ is the continuous func-
tion of Kp.

When0 < Kp < A cos θ, we can get from ex-
pression (28)

cos
(π

2
λ
)

=
1

√

1 + A2 sin2 θ
(A cos θ−Kp)2

(29)
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The FOPI controller satisfies the condition of0 < λ <
2, so the left of equation (29) is the monotone de-
creasing function ofλ and the right of equation (29) is
the monotone decreasing function ofKp. Soλ is the
monotone increasing function ofKp.

WhenKp > A cos θ, the expression (28) can be
expressed as,

cos
(π

2
λ
)

= −
1

√

1 + A2 sin2 θ
(Kp−A cos θ)2

(30)

The left of equation (30) is the monotone decreas-
ing function of λ and the right of equation (30) is
the monotone decreasing function ofKp. Soλ is the
monotone increasing function ofKp.

WhenKp = A cos θ, from (28) we can getλ = 1.
In conclusion,λ is the monotone increasing function
of Kp in expression (26).

We define

λ = g1(Kp) =
2

π
arccos

A cos θ −Kp
√

K2
p +A2 − 2KpA cos θ

(31)
whereλ is the monotone increasing function ofKp.
That is to sayg

′

1(Kp) > 0.
(ii) From equation (27), we can getλ is the func-

tion of Kp and we define

λ = g2(Kp) =
Aϕpωc

Kp sin θ
(32)

According to0 < λ < 2 andKp > 0, we can get
from (32)

Aϕpωc

sin θ
> 0 (33)

So the derivative ofg2(Kp) is

g
′

2(Kp) = −
Aϕpωc

K2
p sin θ

< 0 (34)

That is to say,λ is the monotone decreasing function
of Kp.

(iii) We define

h(Kp) = g1(Kp)− g2(Kp) (35)

We can get the derivative functionh
′

(Kp)

h
′

(Kp) = g
′

1(Kp)− g
′

2(Kp) (36)

According to the conclusions from (i) and (ii), we can
know that the derived functionh

′

(Kp) is greater than
zero. Soh(Kp) is the monotone increasing function.
So equations (26) and (27), if any, have only one solu-
tion. That means the parametersλ andKp are unique.

Put the parametersλ andKp into equation (25),
the parameterKi is also unique.

Taken (i), (ii) and (iii) together, the uniqueness of
FOPI controller parameter solution is proved.

7 Simulation and Verification
In this section, robust FOPI controllers for first order
plant, first order plus time delay controlled plant and
fractional order plant are respectively designed based
on vector model to verify the effectiveness and cor-
rectness of the proposed vector method.

It gives the unit step response when open-loop
gain are respectively 0.9, 1 and 1.1(the variation of
open-loop gain is±10%). Fig.5 shows the structure
chart of FOPI control system. We can changeK or
P (s) and get simulation results to verify the effective-
ness.

Fig. 5. Structure chart of FOPI control system

• Case-1: In reference [21], given the plantP (s) =
1/(Ts + 1), whereT = 0.4s, the gain crossover fre-
quencyωc = 10rad/s and the phase marginφm =
70◦.

According to the known conditions, we can
obtain module value of the plant|P (jωc)|, phase
angle of the plant6 P (jωc) and phase angle gradient
of the plantϕp in the condition ofωc = 10rad/s.
Those respectively are

|P (jωc)| = −12.3dB, 6 P (jωc) = −76◦

ϕp =
d(Arg[P (jω)])

dω

∣

∣

∣

ω=10rad/s
= −0.0235

And then, we can get module value of fractional or-
der controllerA = 12.3dB, phase angle of fractional
order controllerθ = −34◦ < 0 and phase angle gra-
dientϕc = 0.0235. So the fractional order controller
parameters are respectivelyKp = 2.376, λ = 0.7299
andKi = 13.5761. The transfer function of fractional
order controller can be obtained as follows,

C1(s) = 2.376 + 13.5761s−0.7299 (37)

The Bode plot of open-loop transfer function is shown
in Fig.6(a) and the unit step responses with open-loop
gains changing from 0.9 to 1.1 are shown in Fig.6(b).

Compared with reference [21], we can see that
the designed robust FOPI controller based on the pro-
posed vector method is basically consistent with the
robust FOPI controller

C(s) = 2.3702(1 +
5.747

s0.73
) = 2.3702 +

13.6215

s0.73
(38)

designed by traditional method and the simulation re-
sults also comply with the design requirement.
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Bode Diagram
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Fig. 6(a). Bode plot of open-loop transfer function
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Fig. 6(b). Unit step responses with open-loop gain
variations

Fig. 6. Bode plot of open-loop transfer function and
unit step responses in case-1

• Case-2: In reference [22], given the plantP (s) =
e−τs/(Ts + 1), whereT = 0.4s, τ = 0.01, the gain
crossover frequencyωc = 10rad/s and the phase
marginφm = 50◦ .

According to the known conditions, we can
obtain module value of the plant|P (jωc)|, phase
angle of the plant6 P (jωc) and phase angle gradient
of the plantϕp in the condition ofωc = 10rad/s.
Those respectively are

|P (jωc)| = −12.3dB, 6 P (jωc) = −81.8◦

ϕp =
d(Arg[P (jω)])

dω

∣

∣

∣

ω=10rad/s
= −0.0335

And then, we can get module value of fractional or-
der controllerA = 12.3dB, phase angle of fractional
order controllerθ = −48.2◦ < 0 and phase angle gra-
dientϕc = 0.0335. So the fractional order controller

parameters are respectivelyKp = 2.124, λ = 0.8727
andKi = 23.3818. The transfer function of fractional
order controller can be obtained as follows,

C2(s) = 2.124 +
23.3818

s0.8727
(39)

The Bode plot of open-loop transfer function is shown
in Fig.7(a) and the unit step responses with open-loop
gains changing from 0.9 to 1.1 are shown in Fig.7(b).

Compared with reference [22], we can see that
the designed robust FOPI controller based on the pro-
posed vector method is basically consistent with the
robust FOPI controller

C(s) = 2.1204(1 +
11.06

s0.8731
) = 2.1204 +

23.4516

s0.8731
(40)

designed by traditional method and the simulation re-
sults also comply with the design requirement.
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Fig. 7(a). Bode diagram of open-loop transfer
function in case-2
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with open-loop gain variations in case-2

Fig. 7. Bode diagram of open-loop transfer function
and unit step responses in case-2
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• Case-3: In reference [19], given the plantP (s) =
1/(Tsβ + 1), whereT = 0.4s, β = 0.5, the gain
crossover frequencyωc = 10rad/s and the phase
marginφm = 50◦.

According to the known conditions, we can ob-
tain module value of the plant|P (jωc)|, phase angle
of the plant6 P (jωc) and phase angle gradient of the
plant ϕp in the condition ofωc = 10rad/s. Those
respectively are

|P (jωc)| = −6.43dB, 6 P (jωc) = −25.3◦

ϕp =
d(Arg[P (jω)])

dω

∣

∣

∣

ω=10rad/s
= −0.0102

And then, we can get module value of fractional
order controllerA = 6.43dB, phase angle of frac-
tional order controllerθ = −84.7◦ < 0 and phase
angle gradientϕc = 0.0102. So the fractional order
controller parameters are respectivelyKp = 0.1815,
λ = 1.215 andKi = 35.2293. The transfer func-
tion of fractional order controller can be obtained as
follows,

C3(s) = 0.1815 + 35.2293s−1.215 (41)

The Bode plot of open-loop transfer function
is shown in Fig.8(a) and the unit step responses of
closed-loop system with open-loop gains changing
from 0.9 to 1.1 are shown in Fig.8(b).

Compared with reference [19], we can see that
the designed robust FOPI controller based on the pro-
posed vector method is basically consistent with the
robust FOPI controller

C(s) = 0.1817(1 +
194.4

s1.216
) = 0.1817 + 35.32s−1.216

(42)
designed by traditional method and the simulation re-
sults also comply with the design requirement.

From Fig.6(a),7(a) and Fig.8(a), we can know
that they all meet requirements of the given gain
crossover frequency, the phase margin and flat phase
around cross-over frequency. From Fig.6(b), 7(b) and
Fig.8(b), it can be seen that the overshoots of step
responses are basically the same when the open-loop
gain K has variation of±10%, so it meets the re-
quirement of robustness to open-loop gain variations.
So the proposed vector method for designing a robust
FOPI controller is correct.

Bode Diagram
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Fig. 8(a). Bode plot of open-loop transfer function
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Fig. 8. Bode plot of open-loop transfer function and
unit step responses in case-3

8 Conclusion

On the basis of traditional design method of robust
fractional order PI controller, this paper proposes and
illustrates an optimization method for designing ro-
bust fractional order controller based on vector model,
and proves the uniqueness of FOPI parameter solu-
tion. Compared with references [15–19, 21, 22], the
proposed method which is used to design a robust
FOPI controller has smaller calculated amount and
simpler derivation process. The results show that the
FOPI controller which is designed by vector method
not only can meet the performance index, but also be
unique.
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